Search results for " Drawing"

showing 10 items of 300 documents

Novel simple templates for reproducible positioning of skin applicators in brachytherapy.

2016

Purpose : Esteya and Valencia surface applicators are designed to treat skin tumors using brachytherapy. In clinical practice, in order to avoid errors that may affect the treatment outcome, there are two issues that need to be carefully addressed. First, the selected applicator for the treatment should provide adequate margin for the target, and second, the applicator has to be precisely positioned before each treatment fraction. In this work, we describe the development and use of a new acrylic templates named Template La Fe-ITIC. They have been designed specifically to help the clinical user in the selection of the correct applicator, and to assist the medical staff in reproducing the po…

0106 biological sciencesEngineering drawingmedicine.medical_specialtyMedical staffelectronic brachytherapymedicine.medical_treatmentTreatment outcomeBrachytherapybrachytherapylcsh:Medicine01 natural sciences03 medical and health sciences0302 clinical medicineMargin (machine learning)medicineRadiology Nuclear Medicine and imagingMedical physicsReview Paperskin cancerbusiness.industrylcsh:RtemplateThin sheetClinical Practiceskin applicatorsTemplateOncology030220 oncology & carcinogenesisbusiness010606 plant biology & botanyJournal of contemporary brachytherapy
researchProduct

Geometrical deviation of end-of-life parts as a consequence of reshaping by single point incremental forming

2021

AbstractPutting in place circular economy strategies is an urgent challenge to face. In this scenario, manufacturing processes play a relevant role as efficient material reuse enabler. Scientists have to make an effort either to find new process or to rethink old process to reprocess end-of-life (EoL) component to recover both material and functions. In this paper, single point incremental forming (SPIF) process is used for reshaping sheet metal EoL components. The entire process chain was replicated including both deep drawing process (to imitate the end-of-life component) as well as SPIF operations (to obtain the reshaped components). The geometrical deviation as a consequence of SPIF ope…

0209 industrial biotechnologyCircular economyComputer scienceGeometrical deviationMechanical engineering02 engineering and technology010501 environmental sciencesReuse01 natural sciencesIndustrial and Manufacturing Engineering020901 industrial engineering & automationComponent (UML)Deep drawing0105 earth and related environmental sciencesMechanical EngineeringCircular economyProcess (computing)ReshapingComputer Science ApplicationsControl and Systems EngineeringFace (geometry)visual_artvisual_art.visual_art_mediumSingle pointSPIFSheet metalSoftware
researchProduct

Re-forming end-of-life components through single point incremental forming

2020

Abstract Applying Circular Economy strategies is mandatory to face material demand while minimizing the environmental impact. Manufacturing processes are to be thought as means to enable material/component reuse strategies. This paper presents the suitability of Single Point Incremental Forming (SPIF) to re-form End-of-life sheet metal components. Deep drawing followed by SPIF process on aluminium alloys were carried out to simulate reforming processes chain. The resulting thinning and strain distributions were experimentally analysed for different configurations. The research proves that the local action and enhanced formability nature of SPIF allow non-homogeneously thinned and reduced fo…

0209 industrial biotechnologyComputer scienceAluminium alloychemistry.chemical_elementMechanical engineering02 engineering and technologyReuseIndustrial and Manufacturing Engineering020901 industrial engineering & automationAluminiumComponent (UML)FormabilityDeep drawingProcess (computing)Reshaping021001 nanoscience & nanotechnologyIncremental sheet formingchemistryMechanics of Materialsvisual_artStrain analysevisual_art.visual_art_medium0210 nano-technologySheet metalThinningIncremental sheet forming
researchProduct

Generative Design for Additively Manufactured Textiles in Orthopaedic Applications

2021

AbstractThe aim of this work is to implement a new process for the design and production of orthopaedic devices to realize entirely by Additive Manufacturing (AM). In particular, a generative algorithm for parametric modelling of flexible structures to use in orthopaedic devices has been developed. The developed modelling algorithm has been applied to a case study based on the design and production of a customized elbow orthosis made by Selective Laser Sintering. The results obtained have demonstrated that the developed algorithm overcomes many drawbacks typical of traditional CAD modelling approaches. FEM simulations have been also performed to validate the design of the orthosis. The new …

0209 industrial biotechnologyEngineering drawingElbow orthosiComputer scienceProcess (engineering)Additive ManufacturingGenerative algorithmsCADAdditively manufactured textile02 engineering and technology01 natural sciences0104 chemical scienceslaw.invention010404 medicinal & biomolecular chemistrySelective laser sintering020901 industrial engineering & automationlawParametric modellingCAD modellingElbow orthosisGenerative DesignSettore ING-IND/15 - Disegno E Metodi Dell'Ingegneria IndustrialeParametric cadFem simulations
researchProduct

Heat in Metal Cutting

2008

This chapter provides comprehensive knowledge regarding thermal effects during the cutting process with both uncoated and coated cutting tools. Main heat sources and flowing heat fluxes into the tool, chip and workpiece are characterized and quantified. The heat distribution models that allow the analytical prediction of heat partition between the tool and the chip are specified. They consider such thermal properties as specific heat, thermal conductivity and diffusivity, Peclet thermal number, and heat transmission ratio, all as functions of temperature. Finite element method and finite difference method simulations applied to the prediction of temperature fields are outlined for turning a…

0209 industrial biotechnologyEngineering drawingMaterials scienceCutting toolMetallurgyMechanical engineering02 engineering and technology010501 environmental sciencesHeat sinkThermal diffusivity01 natural sciencesFinite element methodHeat pipe020901 industrial engineering & automationThermal conductivityHeat transferHeat deflection temperatureMetal cutting0105 earth and related environmental sciences
researchProduct

Comparison between Deep-Drawing and Incremental Forming Processes from an Environmental Point of View

2019

Deep-drawing is an industrial forming process which allows the user to process large batches of sheet metals parts. One of the major drawbacks of this process is the complexity and the high cost of dies. In comparison incremental forming is a flexible process, allowing the user to obtain sheet metal parts without the need of using a die. The present paper aims to present a comparative study of the two forming processes by presenting the main advantages and drawbacks of each one. The comparative study, aimed on the industrial implementation of the incremental forming process requires a comparison of the two processes regarding the environmental impact. Thus, the results of the study will jus…

0209 industrial biotechnologyEngineering drawingMaterials scienceMechanical Engineering0211 other engineering and technologiesForming processes02 engineering and technologyCondensed Matter Physics020901 industrial engineering & automationMechanics of MaterialsGeneral Materials SciencePoint (geometry)021108 energyDeep drawingMaterials Science Forum
researchProduct

Vision guided robotic inspection for parts in manufacturing and remanufacturing industry

2020

AbstractEnvironmental and commercial drivers are leading to a circular economy, where systems and components are routinely recycled or remanufactured. Unlike traditional manufacturing, where components typically have a high degree of tolerance, components in the remanufacturing process may have seen decades of wear, resulting in a wider variation of geometries. This makes it difficult to translate existing automation techniques to perform Non-Destructive Testing (NDT) for such components autonomously. The challenge of performing automated inspections, with off-line tool-paths developed from Computer Aided Design (CAD) models, typically arises from the fact that those paths do not have the r…

0209 industrial biotechnologyEngineering drawingNon-Destructive Testing (NDT)Machine visionComputer science02 engineering and technologyManagement Monitoring Policy and Lawcomputer.software_genreTS01 natural sciencesIndustrial and Manufacturing Engineering010309 optics020901 industrial engineering & automation0103 physical sciencesStructure from motionComputer Aided Design3D reconstructionWaste Management and DisposalRemanufacturingGraphical user interfacebusiness.industryOrientation (computer vision)Ultrasonic testingAutomationbusinesscomputerRobotic inspection
researchProduct

Parametric Hull Design with Rational Bézier Curves

2021

AbstractIn this paper, a tool able to support the sailing yacht designer during the early stage of the design process has been developed. Quadratic and cubic Rational Bézier curves have been selected to describe the main curves defining the hull of a sailing yacht. The adopted approach is based upon the definition of a set of parameters, say the length of water line, the beam of the waterline, canoe body draft and some dimensionless coefficients according to the traditional way of the yacht designer. Some geometrical constraints imposed on the curves (e.g. continuity, endpoint angles) have been conceived aimed to avoid unreasonable shapes. These curves can be imported in any commercial CAD …

0209 industrial biotechnologyEngineering drawingVisual BasicComputer science020101 civil engineeringBézier curve02 engineering and technologycomputer.software_genre0201 civil engineeringWaterlinesymbols.namesake020901 industrial engineering & automationQuadratic equationHullLine (geometry)symbolsComputer Aided Designcomputercomputer.programming_languageParametric statistics
researchProduct

Friction stir extrusion to recycle aluminum alloys scraps: Energy efficiency characterization

2019

Abstract Solid state recycling refers to a group of processes allowing direct recycling of metals scraps into semi-finished product. Their main advantage lies in avoiding the molten state of the material which badly affects the environmental performance of the conventional (remelting based) recycling routes. It is expected that such process category would lower the environmental performance of metals recycling. In this paper, the friction stir extrusion process for aluminum alloy AA 2050 wire production is analyzed under the primary energy demand perspective. The process electrical energy demand is quantified with varying process parameters. An empirical modelling approach was applied and a…

0209 industrial biotechnologyMaterials sciencePrimary energyAluminium alloyStrategy and ManagementAlloySustainable manufacturingchemistry.chemical_element02 engineering and technologyManagement Science and Operations Researchengineering.materialIndustrial and Manufacturing Engineering020901 industrial engineering & automationAluminiumSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazionePressingWire drawingElectric potential energyMetallurgy021001 nanoscience & nanotechnologySECFriction stir extrusionchemistryengineeringExtrusion0210 nano-technologySolid State recyclingEfficient energy use
researchProduct

Heuristics for the min–max arc crossing problem in graphs

2018

Abstract In this paper, we study the visualization of complex structures in the context of automatic graph drawing. Constructing geometric representations of combinatorial structures, such as networks or graphs, is a difficult task that requires an expert system. The automatic generation of drawings of graphs finds many applications from software engineering to social media. The objective of graph drawing expert systems is to generate layouts that are easy to read and understand. This main objective is achieved by solving several optimization problems. In this paper we focus on the most important one: reducing the number of arc crossings in the graph. This hard optimization problem has been…

021103 operations researchTheoretical computer scienceOptimization problemComputer scienceHeuristic0211 other engineering and technologiesGeneral Engineering0102 computer and information sciences02 engineering and technologycomputer.software_genre01 natural sciencesGraphExpert systemComputer Science ApplicationsVisualization010201 computation theory & mathematicsArtificial IntelligenceGraph drawingHeuristicscomputerExpert Systems with Applications
researchProduct